9i果冻制作厂

张心昱与合作者在森林土壤磷循环微生物机制方面取得进展


植物可以利用磷酸酶降解有机磷和与菌根真菌共生途经获取磷。前期中国东部森林样带调查结果表明,南方亚热带及热带森林生态系统土壤碳磷、氮磷水解酶计量比明显小于1,这一定量结果证实亚热带及热带森林土壤微生物可以通过调节水解酶的计量比来缓解磷限制(Xu?et al.,2017)。亚热带与温带森林土壤磷含量影响机制分析发现,微生物量、磷酸酶活性是影响温带和亚热带森林土壤有效磷含量的关键因素,磷酸酶催化效率是决定深层土壤磷有效性的主要因素(Liu et al.,2023)。

亚热带喀斯特区域与红壤区域外生菌根与丛枝菌根植物获取磷的策略研究表明,丛枝菌根植物通过分泌较高的磷酸酶,增加根际土壤磷有效性(Yang?et al.,?2022?a,b)。结合原位酶谱和分子生物学分析技术,发现根际磷酸酶活性的热点区中,稀有种固氮菌群显着影响土壤碱性磷酸酶活性,强调了土壤氮磷循环之间的耦合关系(Liu et al.,2021)。

依托温带(长白山)、亚热带(千烟洲、鼎湖山)森林氮磷添加控制实验平台,发现4年氮添加增加森林土壤磷酸酶活性和催化效率,而4年磷添加增加了温带森林土壤磷酸酶活性,但降低了亚热带森林土壤磷酸酶活性和催化效率(Zhang et al.,2018)。亚热带杉木林(千烟洲)7年氮磷添加控制实验结果表明,磷及氮磷添加显着提升了原生生物多样性,并通过自上而下捕食调节作用,增强细菌群落多样性(Liu et al.,2024)。亚热带杉木林(千烟洲)7年氮添加导致土壤酸化,上调磷转运基因(如 pstB)表达,增强微生物对无机磷的主动吸收能力;磷、氮磷添加提升原生生物多样性,导致自上而下的食物网调节作用,选择性富集了如酸杆菌等关键细菌类群,从而增强磷酸酶与底物的结合效率(图1)。本研究提出以转运基因+营养级结构+酶催化效率为核心的微生物调控策略,为缓解低磷森林生态系统植物养分限制提供了理论基础(Liu et al.,2025)。

以上研究得到国家自然科学基金资助

相关成果列表:

(1)?Liu,S.,Zhang,X.Y.*,Wang,H.M.,Kuzyakov,Y.,Pan,J.X.,Chen,F.S.,Wang,F.C.,Li,D.D.,Tang,Y.Q.,Ma,Z.Q. Phosphorus-transforming microbes enhance phosphatase catalytic efficiency to alleviate phosphorus limitation under nitrogen and phosphorus additions in subtropical forest soil. Soil Biology and Biochemistry,?2025,209:109915.?https://doi.org/10.1016/j.soilbio.2025.109915

(2)?Liu,S.,Zhang,X.Y.*,Wang,H.M.,Dungait,J.A.J.,Pan,J.X.,Lidbury,I.D.E.A.,Ma,Z.Q.,Chen,F.S.,Tang,Y.Q. Seven-year N and P inputs regulate soil microbial communities via bottom-up effects on carbon and nutrient supply and top-down effects on protist relative abundance. Forest Ecology and Management,?2024,552:121582.?https://doi.org/10.1016/j.foreco.2023.121582

(3)?Liu,S.,Zhang,X.Y.*,Pan,J.X.,Ma,Z.Q.?Differences in available phosphorus in temperate and subtropical forest soils. Applied Soil Ecology,2023,187:104849. https://doi.org/10.1016/j.apsoil.2023.104849

(4)?Yang,?Y.,Zhang,X.Y.*,Hartley,?I.?P.,?Dungait,?J.A.J.,Wen,?X.F.,?Li,?D.D.,?Guo,?Z.M.,Quine.?T.A. Contrasting rhizosphere soil nutrient economy of plants associated with arbuscular mycorrhizal and ectomycorrhizal fungi in karst forests. Plant and Soil,?2022a,70:81–93.?https://doi.org/10.1007/s11104- 021-04950-9

(5)?Yang,Y.,Zhang,X.Y*,Wang,J.,Kou,L.,Ma,Z.,Lyu,S.D.,Wei,J.,Wang,?H.M,Wen,X.F. Phosphorus acquisition strategies of arbuscular mycorrhizal and ectomycorrhizal trees in subtropical plantations. European Journal of Soil Science,?2022b,73(5):e13303.?https://doi.org/10.1111/ejss.13303

(6)?Liu,S.,Zhang,X.Y.*,Dungait,J.A.J.,Quine,?T.A.,Razavi,B.S.?Rare microbial taxa rather than phoD gene abundance determine hotspots of alkaline phosphomonoesterase activity in the karst rhizosphere soil. Biology and Fertility of Soils,?2021,57:257–268.?https://doi.org/10.1007/s00374-020-01522-4

(7)?Zhang,X.Y.*,Yang,Y.,Zhang,C.,Niu,S.L.,Yang,H.,Yu,G.R.,Wang,H.M.,Blagodatskaya,E.,Kuzyakov,Y.,Tian,D.S.,Tang,Y.Q.,Liu,S.,Sun,X.M. Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils. Functional Ecology,2018,32:106–116. https://doi.org/10.1111/1365-2435.12936

(8)?Xu,Z.W.,Yu,G.R.*,Zhang,X.Y.*,He,?N.P.,?Wang,?Q.F.,?Wang,S.Z.,?Wang,R.L.,Zhao,?N.,?Jia,?Y.L.,?Wang,C.Y. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology and Biochemistry,2017,104:152-163. http://dx.doi.org/10.1016/j.soilbio.2016.10.020?




1 偏最小二乘路径模型揭示氮磷添加对杉木林土壤磷有效性影响的微生物机制





附件下载: